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This paper deals with the propagation of nearly resonant gravity waves in two-
layer flows over a bottom topography assuming that both fluids are incompressible
and inviscid. Evolution equations are derived for weakly nonlinear surface-layer and
internal-layer waves in the hydraulic limit of infinite wavelength. Special emphasis is
placed on the flow regime where the quadratic nonlinear parameter associated with
internal-layer waves is small or vanishes. For example, this is the case for all possible
density ratios if the velocities in both layers are equal and if the interface height is
close to one-half the total fluid-layer height. The waves then exhibit so-called mixed
nonlinearity leading in turn to the formation of positive and negative hydraulic jumps.
Considerations based on a model equation for the internal dissipative–dispersive
structure of hydraulic jumps indicate that the admissibility of discontinuities in this
regime depends strongly on the relative magnitudes of dispersion and dissipation. Sur-
prisingly, these admissible hydraulic jumps may violate the wave-speed-ordering rela-
tionship which requires that the upstream wave speed does not exceed the propagation
speed of the discontinuity. An important example is provided by the inviscid hydraulic
jump, which has been known for some time, although its non-classical nature, in that
it transmits rather than absorbs waves, has apparently not been recognized before.

1. Introduction
Quasi-one-dimensional gas-dynamic flows and hydraulic single-layer flows over a

bottom topography represent two examples where the effects caused by the non-
linearity of the governing equations of fluid mechanics can be studied most easily.
As a consequence, they are included in most standard textbooks. If considerations
are limited to perfect gases, both types of flow share many common features and, in
fact, in the limit of weak nonlinearity are equivalent from a mathematical point of
view. In both applications one has to distinguish between subcritical and supercritical
flow regimes, i.e. states where the flow velocity is smaller or larger than the signalling
velocity. Also, solutions of steady as well as unsteady flows are found to contain
regions of multivaluedness, in general, which have to be eliminated by the insertion
of discontinuities into the flow quantities. These discontinuities representing shocks in
gas-dynamic flows and hydraulic jumps in single-layer flows are not uniquely defined
by the initial data and boundary conditions for the problem under consideration.
Therefore, a central issue is the identification of physically acceptable weak solutions.
This is achieved by invoking the second law of thermodynamics, which rules out the
formation of negative jumps leading to a decrease in the pressure in gas-dynamic
flows or a sudden reduction in the fluid-layer thickness in hydraulic flows.
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In a strict sense the equivalence between gas-dynamic and hydraulic flows is lost if
discontinuities form. This is due to the fact that the application of the one-dimensional
version of the governing equations is rigorously justified for the investigation of gas-
dynamic shocks, while it yields an approximate description of hydraulic jumps only
when the acceleration of the fluid in the vertical direction is neglected. Using the one-
dimensional form of the governing equations substantially simplifies investigation of
the internal dissipative structure of shocks which emerges if thermoviscous effects
are accounted for. As a consequence, the Navier–Stokes structure of gas-dynamic
shocks is now well understood. In contrast, no model exists at present that allows
the incorporation of viscosity and acceleration parallel to the front into a refined
self-consistent description of hydraulic jumps. This is true even for the most simple
case of laminar flow, although the (interactive) mechanism which causes the departure
of the flow from the unperturbed upstream state has been clarified (see Gajjar &
Smith 1983; Bowles & Smith 1992). The resulting lack of information, however, is
not expected to be crucial as far as the admissibility of discontinuities is concerned
when we consider the hydraulic limit, i.e. when the streamwise extent of the dissipa-
tive profile associated with the hydraulic jump is small compared with a characteri-
stic wavelength. In fact, in the related gas-dynamic problem the conclusions regarding
jump conditions derived from the evolution of the shock-layer problem are found
to be completely equivalent to the requirement of entropy increase across the
shock.

The situation outlined so far changes drastically if more general situations are
considered. This was recognized first in studies dealing with the dynamics of dense
gases where the so-called fundamental derivative, which characterizes the variation of
the convected sound speed with density, may change sign and assume negative values
over a finite range of pressures and densities (Thompson 1971; Cramer & Kluwick
1984; Kluwick 2001). Consequently, both positive and negative shocks can form and
coexist in such a fluid, which is then said to exhibit mixed nonlinearity. Furthermore,
it is found that the second-law requirement for entropy increase across the shock
is no longer sufficient to eliminate all shocks that violate the wave-speed-ordering
relationship

vwb > vs > vwa. (1.1)

In general, these inequalities are considered to be necessary and sufficient conditions
for admissible discontinuities. Here vw and vs denote, respectively, the wave speed
and the shock speed while the subscripts b and a refer to states before (upstream of)
and after (downstream of) the shock.

The relationship (1.1), now commonly referred to as the Lax criterion (e.g. Lax
1957), is plausible for various reasons. First, it implies that discontinuities are formed
by converging rather than diverging wavefronts. This suggests that discontinuities
violating (1.1) may not be able to propagate as stable shocks but will disintegrate into
shocks of smaller intensity, satisfying (1.1), and continuous waves. Second, a shock
violating (1.1) involves wavefronts propagating away from the discontinuity and, so
it has been argued, violates the natural requirement that acceptable solutions must
depend continuously on the initial and boundary values (e.g. Germain 1972). Despite
the plausibility of (1.1), it is now recognized that satisfying these geometric inequalities
neither always rules out inadmissible shocks nor always constitutes a necessary
condition for admissibility. In the above-mentioned case of dense gases, investigations
of the thermoviscous shock structure carried out by Cramer & Crickenberger (1991)
and Kluwick (1993) show that the geometric admissibility criterion (1.1) (as well
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as the requirement of entropy increase) may not be sufficient to guarantee that
discontinuities have such a shock structure. Moreover, some discontinuities having a
thermoviscous inner structure may violate (1.1). Viewed in a general mathematical
context, shock waves in dense gases provide an example of a scalar conservation law
such as ∂u/∂t + ∂f (u)/∂x = 0 where the flux f is not convex so that ∂2f/∂u2 changes
sign. Then (1.1) must be replaced by inequalities based on the convex hull of f (see
for example Keyfitz 1995). This result can be formulated as the so-called Oleinik
condition (see Oleinik 1959, 1964 and § 3 below). We mention in the context of two-
layer fluid flows the recent papers by Jiang & Smith (2001a , b), in which they invoke
a ‘steepening hypothesis’ as a mechanism for shock insertion. This is equivalent to
the Lax condition. Consistently with this, the steady-state wave equation they derive
in the weak-shock limit has a convex flux, and phenomena associated with mixed
nonlinearity are excluded. In the finite-amplitude case, their prediction of finite-
strength shocks, which occur on the boundary of applicability of their theory, is in
agreement with a non-convex flux.

More recently it has been shown that admissible shocks can exist that violate even
the (more general) Oleinik condition. An example of this arises in the context of
particle suspensions, where the shock structure involves not only dissipative but also
dispersive terms (see Kluwick, Cox & Scheichl 2000). Again the general mathematical
framework involves shocks waves for non-convex flux functions, but now the shocks
arise as limits of diffusive–dispersive approximations (see Jacobs, McKinney & Shearer
1995; Hayes & LeFloch 1997).

The phenomenon of mixed nonlinearity associated with a non-convex flux function
has been encountered more recently also in two-layer flows over a topography, thus
extending the analogy between one-dimensional gas-dynamic flows and hydraulic
flows mentioned before. In such a system two types of waves have to be distinguished.
The propagation speed of weakly nonlinear free-surface-layer waves is found to be
a strictly monotonic function of the wave amplitude, resulting in flows analogous
to classical gas-dynamics. In contrast, the propagation speed associated with small-
amplitude finite-rate internal-layer waves is not monotonic. Investigations dealing
with the hydraulic limit of infinite wavelength, therefore, will have to face problems
similar to those occurring in the field of dense gas-dynamics. Apparently, flows of
this type have not been studied systematically yet. This is one of the main aims of
the present study, which is structured as follows.

Section 2 deals with the problem formulation and the derivation of evolution
equations for weakly nonlinear surface-layer and internal-layer waves in two-layer
flows over a topography. Specifically, it is assumed that the undisturbed state is close
to a critical state for which one of the linear wave speeds vanishes. This, for example,
is the case in situations where the velocities in both fluid layers, taken to be of almost
the same thickness, are equal and results in a resonant wave response to topographic
forcing. Here, special emphasis is placed on the case of internal-layer waves having
the property that the quadratic nonlinearity is of the same size as the wave amplitude
and may change sign.

Representative solutions of the evolution equation for internal-layer waves exhibit-
ing mixed nonlinearity are presented in § 3. These include steady flows past single
humps and results describing the unsteady transition between different possible steady
states. Solutions which include hydraulic jumps are constructed on the basis of the
Oleinik condition, which for the type of problems considered here is seen to be
equivalent to the wave-speed-ordering principle (1.1) in the generalized sense that the
equality signs have to be included.
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Figure 1. Problem and notation used for two-layer fluid flow over an isolated obstacle.

A rigorous investigation of this principle requires analysis of the internal dissipative
dispersive structure of hydraulic jumps, which, unfortunately, is not known at present.
Further comments on shock admissibility summarized in § 4, therefore, are based
on a model equation which exhibits the correct dispersive behaviour but is only
approximate as far as dissipative effects are concerned. Despite this obvious deficiency,
this model equation is expected to provide at least a qualitative description of how
possible shock profiles are affected by the relative magnitudes of dispersion and
dissipation. Insight is further gained into how lossless hydraulic jumps emerge in the
limit of vanishing dissipation, as predicted by existing theories of inviscid internal-
layer waves of large but finite wavelength (e.g. Kakutani & Yamasaki 1978; Helfrich,
Melville & Miles 1984; Melville & Helfrich 1987). Also discussed is the question
of how these jumps can be incorporated in the strictly hyperbolic limit of infinite
wavelength, where dispersion no longer enters the evolution equation.

2. Derivation of evolution equations
We investigate the propagation of weakly nonlinear gravity waves in a two-

layer fluid over a bottom topography when the fluid is assumed to be inviscid
and incompressible. The flow is contained within a two-dimensional channel, with
an isolated obstacle located on what is otherwise a flat bottom. The problem and
notation used are illustrated in figure 1.

2.1. Formulation

We consider a flow perturbed from a uniform state either by the instantaneous
formation of an obstacle or by flow variations upstream or downstream of an existing
obstacle. We assume that the obstacle is of characteristic length L̃ and height z̃ = s̃(x̃)
with maximum height small compared with its length. Specifically, we consider
perturbations of a uniform flow having flow speeds ṽ10, ṽ20 and constant fluid depths
h̃10, h̃20. The subscripts 1, 2 denote the surface and internal layers, respectively, and
the fluid layers are distinguished by their densities ρ̃1, ρ̃2.

A natural non-dimensionalization of the governing equations involves the length
L̃, the total depth h̃10 + h̃20 and the phase velocity of surface gravity waves, [g̃(h̃10 +
h̃20)]

1/2, as reference quantities. Non-dimensional variables are then defined by

x̃ = L̃x, z̃ = (h̃10 + h̃20)z, s̃ = (h̃10 + h̃20)s, t̃ =
L̃

[g̃(h̃10 + h̃20)]1/2
t,

h̃i = (h̃10 + h̃20)hi, ṽi = [g̃(h̃10 + h̃20)]
1/2vi, P̃i = ρ̃i g̃(h̃10 + h̃20)Pi.

⎫⎪⎬
⎪⎭ (2.1)
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The depths, velocities and pressure in the two fluid layers, i = 1, 2, are denoted by
hi(x, t), vi(x, t) and Pi(x, z, t), with g̃ the gravitational acceleration.

Since the characteristic length L̃ is assumed to be large compared with the unper-
turbed heights, the flow in both layers is governed by the one-dimensional form of
the Euler equations,

∂vi

∂t
+ vi

∂vi

∂x
= −∂Pi

∂x
, (2.2)

∂hi

∂t
+

∂

∂x
(hivi) = 0, (2.3)

where i = 1, 2. Similarly to the case of single-layer flow (see for example Peregrine
1974), we assume a hydrostatic pressure distribution in each layer, so that

P1 = Pa + (h1 + h2 + s − z),
P2 = ρPa + (ρh1 + h2 + s − z),

}
(2.4)

where ρ = ρ̃1/ρ̃2 and Pa denotes the pressure immediately above the top layer non-
dimensionalized with respect to ρ̃1g̃(h̃10 + h̃20). This form of simplification was used
by Armi (1986), who considered steady two-layer flows through contractions and over
sills, allowing for a perturbation level of order 1. The present study is more restrictive,
in that it concentrates on small-amplitude disturbances of a uniform state but also
more general in that it includes unsteady effects. Throughout the analysis we will
assume 0 <ρ � 1 for stability. Equations (2.2)–(2.4) can be formulated as

∂u
∂t

+ A(u)
∂u
∂x

+
ds

dx
b = 0 (2.5)

for the fluid flow u = (v2, h2, v1, h1)
T , where

A(u) =

⎛
⎜⎜⎝

v2 1 0 ρ

h2 v2 0 0

0 1 v1 1

0 0 h1 v1

⎞
⎟⎟⎠ (2.6)

and

b = (1, 0, 1, 0)T . (2.7)

The roots of the characteristic equation

det(A(u) − λI) = [(v1 − λ)2 − h1][(v2 − λ)2 − h2] − ρh1h2 = 0 (2.8)

identify the wave speeds λ(u). With the roots ordered as λ1 � λ2 � λ3 � λ4, we can
associate roots λ2, λ3 with wave propagation due to the inclusion of a lower fluid
layer and λ1, λ4 with the surface-layer wave propagation. Of course, waves with speeds
λ2, λ3 involve a distortion of the free surface as well; however, as they cannot occur
in the case of a single-layer fluid, they are termed internal waves. A critical flow
state uc =(v2c, h2c, v1c, h1c)

T is identified with the vanishing of one of the resulting
wave speeds λ= λj (uc). With an undisturbed state u0 = (v20, h20, v10h10)

T close to this
critical flow, a wave generated at the obstacle will be trapped at the site of the
obstacle, resulting in a resonant wave response to the obstacle-forcing, the details of
which are now to be determined.



192 A. Kluwick, S. Scheichl and E. A. Cox

2.2. Evolution equation for Γ = O(1)

The unperturbed conditions near criticality are chosen as

vi0 = vic + σ̄ , hi0 = hic, i = 1, 2, (2.9)

where σ̄ � 1 is introduced as a velocity-detuning parameter. The standard expansion

u = u0 + εu(1) + ε2u(2) + O(ε3) (2.10)

is assumed, with the scalings x, τ = εt for u(i) = u(i)(x, τ ) describing disturbances of
O(ε) trapped over the obstacle and evolving slowly in time. The perturbed fluid flow
represents a resonant response of O(ε) generated by the O(ε2) obstacle forcing

s = ε2s2(x). (2.11)

We assume that σ̄ = εσ, ensuring that velocity detuning enters the describing equations
at the same order as the nonlinear terms.

In component form equation (2.5) is

ε
∂ui

∂τ
+ Aij (u)

∂uj

∂x
+ ε2 ds2

dx
bi = 0. (2.12)

The speed matrix A(u) expanded about the critical state has elements of the form

Aij = A
(0)
ij + εDij + Bijl(ul − ulc ) + · · · , (2.13)

where

A
(0)
ij = Aij (uc), Dij = σδij , Bijl =

∂Aij

∂ul

(uc) (2.14)

and δij is the Kronecker delta. Equations (2.12)–(2.14) imply on equating coefficients
of ε that

at O(ε), A
(0)
ij

∂u
(1)
j

∂x
= 0, (2.15)

at O(ε2), A
(0)
ij

∂u
(2)
j

∂x
= −∂u

(1)
i

∂τ
− σ

∂u
(1)
i

∂x
− Bijlu

(1)
l

∂u
(1)
j

∂x
− ds2

dx
bi. (2.16)

If the generated flow over the obstacle is localized, non-trivial solutions to (2.15) are
given by

u
(1)
j = U (x, τ )rj (2.17)

where A
(0)
ij rj =0, providing that

det A(0) =
(
v2

1c − h1c

)(
v2

2c − h2c

)
− ρh1ch2c = 0. (2.18)

We note in (2.18) that h1c + h2c = h10 + h20 = 1.

As one would expect, on comparing (2.8) and (2.18), the condition for constructing
a disturbance generated at the obstacle and subsequently trapped over the obstacle is
simply the requirement that the unperturbed flow satisfies the critical flow conditions
λ(uc) = 0. A similar condition to (2.18) is found in Shen (1992), where it is observed
that specifying the ratio v1c/v2c then enables the critical velocities to be determined
for a given ρ and h1c. From (2.18) we have the admissible inequalities, either

v2
1c � h1c, v2

2c � h2c, (2.19)

or

v2
1c � h1c, v2

2c � h2c, (2.20)
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(2.19) being associated with a resonant surface-layer wave and (2.20) with the internal-
layer wave.

The scalar amplitude factor U in (2.17) can be determined by requiring the existence
of non-trivial solutions for u(2) at O(ε2). The solvability condition at O(ε2), namely
that the right-hand side of (2.16) is orthogonal to l , the left null vector of A

(0)
ij ,

generates the nonlinear evolution equation

∂U

∂τ
+ σ

∂U

∂x
+ Γ U

∂U

∂x
= −β

ds2

dx
, (2.21)

where

Γ =
liBijlrj rl

lprp

, β =
libi

lprp

(2.22)

and

lmA
(0)
mj = 0. (2.23)

Equation (2.21) includes the effect of wave distortion in the term multiplying Γ ,
obstacle-forcing in the β term, and off-resonant velocity detuning measured by σ .

The critical-speed matrix A(uc) determined by (2.6) has left and right null vectors

l =

(
1, − v2c

h2c

, −1 +
v2

2c

h2c

,
1 − ρ − v2

2c/h2c

v1c

)T

,

r =
(
h1c(1 − ρ) − v2

1c, −h1cv2c + v2cv
2
1c, −v1cv2c/h1cv2c

)T
⎫⎪⎬
⎪⎭ (2.24)

and the only nonzero components of Bijl are

B111 = B212 = B221 = B333 = B434 = B443 = 1. (2.25)

Using (2.24), (2.25) the nonlinear parameter Γ given by (2.22) is evaluated to be given
by

Γ =
3v2c

2h2c

[
v2

2c

(
v2

1c − h1c

)2
+ v2

1c

(
v2

2c − h2c

)
h2c

v2c

(
h1c − v2

1c

)
+ v1c

(
h2c − v2

2c

) ] , (2.26)

the forcing parameter β being given by

β =
v2c

2
[
v2c

(
h1c − v2

1c

)
+ v1c

(
h2c − v2

2c

)] , (2.27)

where v1c, v2c satisfy (2.18). It is clear from inequalities (2.19) and (2.20) that when
v1c � 0, v2c � 0 the parameter β is negative for resonant surface-layer waves and
positive for resonant internal waves.

The behaviour of the nonlinear parameter Γ given by (2.26) is more complicated.
For resonant surface-layer waves inequality (2.19) is satisfied, and if in addition
v1c > 0, v2c > 0 then Γ � 0 for all possible values of the density ratio and unperturbed
fluid depths. In figure 2 the parameter Γ (ρ, h1c) is plotted for values v1c = v2c = vc

satisfying (2.18) and (2.19).
A particular limiting case is the single-layer fluid obtained on setting ρ = 1, v1c =

v2c = 1. Then Γ = −3/2 and the total fluid depth h = 1 + εh(1) + O(ε2) is constructed
from

∂h

∂τ

(1)

− 3

2
h(1) ∂h

∂x

(1)

=
1

2

ds2

dx
. (2.28)

With dispersion included, an equation similar to (2.28) was derived for a moving
pressure disturbance by Akylas (1984) and for a fixed obstacle by Cole (1985). Implied
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Figure 2. The nonlinear parameter Γ given by (2.26) for resonant surface waves,
for various values of ρ (see (2.4)).

by (2.28) is a nonlinear distortion of the initial data, with positive portions of the
wave distorted backwards and negative portions distorted forwards. This distortion
eventually requires, within the hydrostatic approximation, the insertion of jump
discontinuities into the flow. It is useful to recognize that U in (2.21) is proportional
to the perturbed total fluid depth, and hence the only allowable jumps are those which
lead to a sudden increase in the total depth of the fluid. The qualitative behaviour of
resonant surface-layer waves will be similar to (2.28).

For conditions where the internal-layer wave is resonant, the wave behaviour can
be distinctly different. For illustration, consider again the case where v1c = v2c = vc � 0
satisfy (2.18), but now with values of vc(ρ, h1c) satisfying inequality (2.20). As shown in
figure 3, Γ (ρ, h1c) given by (2.26) can change sign depending on the particular critical
conditions imposed. Clearly, if the unperturbed height h1c of the upper fluid layer
exceeds a certain value, which is dependent on the density ratio ρ but, interestingly,
is always close to one-half, then the nonlinear parameter Γ becomes positive. This
results through nonlinear wave evolution in the formation of negative hydraulic
jumps, where a sudden decrease in the total layer thickness occurs. Such phenomena
cannot occur in the case of a single-layer fluid described by (2.28) and are a feature
of internal waves. For a given critical flow, (2.21) allows for either positive or negative
hydraulic jumps but not their simultaneous formation.

Obviously, the asymptotic analysis which leads to (2.21) assumes that Γ = O(1) and
will break down in the vicinity of a transition point where the nonlinear parameter
Γ vanishes. That such transition points occur can be seen from figure 4, where a
curve is plotted, in the (vc, h1c) parameter space, along which Γ is identically zero.
As mentioned before, the precise value of h1c associated with Γ = 0 exhibits a weak
dependence on the density ratio only and is always close to one-half. For values
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Figure 4. Transition curve along which the nonlinear coefficient Γ vanishes for resonant
internal-layer waves.

of vc and h1c away from this curve the wave evolution will be described by (2.21)
with either Γ > 0 or Γ < 0. However, within a Γ = O(ε) neighbourhood of this curve,
small terms neglected in constructing (2.21) become of the same order as the included
nonlinear correction term Γ UUx and a separate analysis is then required. Asymptotic
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expansions were developed by Cramer & Sen (1992) and Kluwick & Cox (1998) to
include this Γ = O(ε) case for general quasi-linear systems of hyperbolic equations.
These techniques will be applied here.

2.3. Internal-layer waves: Γ =O(ε) case

We consider expansions appropriate for internal-layer waves of perturbed amplitude
O(ε) when the critical flow conditions imply that Γ (v1c, v2c, h1c, ρ) =O(ε). Nonlinear
effects will now become significant on the longer time scale O(ε−2). We assume that
the height of the obstacle scales as O(ε3) to generate a forcing term which enters at
the same order as nonlinear effects. The velocity detuning of the upstream velocity
from criticality will be significant now on an O(ε2) scale. Hence, we choose

vio = vic + ε2σ, hio = hic, i = 1, 2, (2.29)

and assume an expansion for u =(v2, h2, v1, h1)
T of the form

u = u0 + εu(1) + ε2u(2) + O(ε3), (2.30)

where each component u(j ) depends now on the resonant scalings x and τ = ε2t .
With the obstacle geometry s = ε3s3(x), (2.5) in component form is now

ε2 ∂ui

∂τ
+ Aij (u)

∂uj

∂x
+ ε3 ds3

dx
bi = 0. (2.31)

The coefficient matrix Aij is expanded as

Aij = A
(0)
ij + Bijl(ul − ulc) + ε2Dij + · · · , (2.32)

where

A
(0)
ij = Aij (uc), Dij = σδij , Bijl =

∂Aij

∂ul

(uc). (2.33)

It is now assumed that Bijl has the expansion

Bijl = B0ij l + εB1ij l + O(ε2), (2.34)

which enables a small, but non-zero, value for Γ to be accounted for. When expansions
(2.30) for u and (2.32) for Aij are substituted into (2.31) we have, again at O(ε),

u
(1)
j = U (x, τ )rj , (2.35)

where A
(0)
ij rj = 0 providing the components of uc satisfy (2.18) and a localized

disturbance is assumed. The quantities u
(2)
j and u

(3)
j satisfy the following:

at O(ε2), A
(0)
ij

∂u
(2)
j

∂x
= −B0ij lu

(1)
l

∂u
(1)
j

∂x
, (2.36)

at O(ε3), A
(0)
ij

∂u
(3)
j

∂x
= −∂u

(1)
i

∂τ
− σ

∂u
(1)
i

∂x
− B0ij l

(
u

(2)
l

∂u
(1)
j

∂x
+ u

(1)
l

∂u
(2)
j

∂x

)

− B1ij lu
(1)
l

∂u
(1)
j

∂x
− ds3

dx
bi. (2.37)

We now proceed as before. The solvability condition for u(2), u(3), namely that the
right-hand sides of (2.36) and (2.37) are orthogonal to l (the left null vector of A

(0)
ij ),

gives for (2.36)

liB0ij lrj rl

lprp

= 0. (2.38)

On comparison with (2.22) this identifies a critical state where Γ is at most O(ε).
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An evolution equation for the amplitude function U (x, τ ) is given by the solvability
condition for u(3) at O(ε3):

liri

(
∂U

∂τ
+ σ

∂U

∂x

)
+ liB0ij lrl

∂u
(2)
j

∂x
U + liB0ij lrju

(2)
l

∂U

∂x
+ liB1ij lrj rlU

∂U

∂x
+ libi

ds3

dx
= 0.

(2.39)

As one would expect, the evolution equation (2.39) for U (x, τ ) contains terms involving
u(2). The nature of these terms becomes clearer on introducing the vectors

bj = liB0ij lrl, cl = liB0ij lrj (2.40)

into (2.39) to give

liri

(
∂U

∂τ
+ σ

∂U

∂x

)
+

P︷ ︸︸ ︷
bj

∂u
(2)
j

∂x
U +

Q︷ ︸︸ ︷
clu

(2)
l

∂U

∂x
+ liB1ij lrj rlU

∂U

∂x
+ libi

ds3

dx
= 0. (2.41)

To evaluate the terms labelled P and Q in (2.41) we use the fact that the vectors b
and c are orthogonal to r and employ the construction

bj = αλA
(0)
λj , cl = γµA

(0)
µl , (2.42)

where A
(0)
λj , A

(0)
µj , j = 1, . . . , 4, denote the three linearly independent row vectors of

A(0); λ, µ take the three values corresponding to the independent rows of A(0). Then
P is determined from (2.36) as the weighted sum

bj

∂u
(2)
j

∂x
= −αλB0λj lrj rlU

∂U

∂x
. (2.43)

Integration of (2.36) also leads to a weighted sum for Q:

clu
(2)
l = − 1

2
γµB0µlkrlrkU

2, (2.44)

where we have assumed that u(2) = 0 when u(1) = 0. The evolution equation (2.41) now
becomes

∂U

∂τ
+ σ

∂U

∂x
+

liB1ij lrj rl

lprp

U
∂U

∂x
−
(

2αλ + γλ

2lprp

Bλjkrj rk

)
U 2 ∂U

∂x
+

libi

lprp

ds3

dx
= 0. (2.45)

With the non-zero components of Bijl given by (2.25), we construct from (2.40)

b = c = (l1r1 + l2r2, l2r1, l3r3 + l4r4, l4r3)
T , (2.46)

l and r being given by (2.24). Then the weighting factors αλ, γµ in (2.45) can be found
by solving (2.42). The final form of the evolution equation is

∂U

∂τ
+ σ

∂U

∂x
+ Γ̂ U

∂U

∂x
− ΛU 2 ∂U

∂x
= −β

ds3

dx
, (2.47)

where Γ̂ = Γ/ε, with Γ given by (2.26), and

Λ =
3αλB0λjkrj rk

2lprp

, (2.48)

β =
v2c

2
[
v2c

(
h1c − v2

1c

)
+ v1c

(
h2c − v2

2c

)] . (2.49)
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Figure 5. The coefficient Λ given by (2.48) for resonant internal-layer waves.

An explicit expression for Λ can be readily determined on first solving (2.42) for αλ

and substituting into (2.48). Specific details can be found in Cramer & Sen (1992) and
Kluwick & Cox (1998). In figure 5 we plot Λ(ρ, h1c) for critical flow conditions near
the Γ = 0 transition curve, for the case where v1c = v2c = vc satisfies (2.18) and (2.20).

The evolution equation (2.47) for internal-layer waves clearly differs from (2.21)
for surface-layer waves in the inclusion of a cubic nonlinear term involving the
coefficient Λ. Waves can now steepen both backwards and forwards, allowing for the
simultaneous occurrence of positive and negative hydraulic jumps in an evolving wave.
As a result, evolution equations having a cubic as well as a quadratic nonlinearity
are said to exhibit mixed nonlinearity and arise in a variety of applications describing
for example acoustic waves in dense gases, elastic shear waves and density waves in
fluidized beds (see Kluwick 1991a).

It is of interest to consider results for the limiting case where 1 − ρ � 1. When the
unperturbed flow velocities are the same in both fluid layers then the critical flow
velocity is given from (2.18) by

v2
c = (1 − ρ)h1ch2c + O((1 − ρ)2). (2.50)

For this slow flow, the coefficients in (2.47) take the limiting values

Γ =
3

2h2c

(h1c − h2c)v
2
c + O

(
v4

c

)
, (2.51)
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Λ =
−3

h2
2c

(
3h2

1c − 3h1c + 1
)
v3

c + O
(
v5

c

)
, (2.52)

β =
1

2
+ O
(
v2

c

)
. (2.53)

It is clear from (2.51) that the critical state Γ = 0 corresponds to equal depths in both
fluid layers.

The evolution equation (2.47), with Γ , Λ and β given by (2.51)–(2.53), agrees with
the results of Melville & Helfrich (1987) if dispersive effects included by them are
neglected. While they consider the case where the upper fluid layer is assumed to
have a rigid upper surface, this is a consistent approximation to a free surface when
1 − ρ � 1.

3. Results
As mentioned in § 2, formal solution of the evolution equations (2.21) and (2.47) by

means of the method of characteristics leads, in general, to the formation of regions
of multivaluedness, which then have to be removed by the insertion of shock fronts
representing hydraulic jumps.

The insertion of discontinuities into the solutions of scalar hyperbolic equations
that are of the form (2.21) or (2.47) can be approached in a number of different
but standard ways. For example, one can construct a travelling-wave solution based
on a viscous regularization which gives the jump conditions in the limit of small
viscosities. There is also the requirement of linearized stability where the shock
is perturbed and where well-posedness of the perturbed problem leads to a jump
condition. Alternatively, there is the evolutionary requirement that a smooth function
asymptotic to the shock will evolve to the shock with increasing time. Whichever
criterion is used, the jump conditions predicted are the same for a strictly convex (or
concave) flux. So, for example, if (2.21) is interpreted as a conservation law for the
density function U with flux function j (U ) = σU + Γ U 2/2, the above approaches are
equivalent to the Lax shock condition

vwb > vs > vwa, vw = j ′(U ), vs =
[j ]

[U ]
, (3.1)

which is a geometric constraint on the characteristic slopes. Here [A] denotes the
jump of the quantity A, i.e. the difference between the values after and before the
front; [A] = Aa − Ab. In the case of a non-convex flux such as in (2.47), where
j = σU + Γ̂ U 2/2 − ΛU 3/3, the Lax condition must be replaced by the Oleinik
condition (Oleinik 1959)

j (U ) − j (Ub)

U − Ub

� vs or vs �
j (U ) − j (Ua)

U − Ua

, vs =
[j ]

[U ]
, (3.2)

which is required to hold for all U between Ua and Ub. This condition reduces to
the Lax condition in the case of a convex flux. Shocks constructed in such a way
that they satisfy the Oleinik condition are also admissible shocks by a mathematical
entropy inequality, the viscosity criteria and the evolutionary criterion (see Hayes &
LeFloch 1997).

The discussion of jump conditions presented so far has been based entirely on
the evolution equations (2.21) and (2.47). From a physical point of view, however,
a treatment on the basis of governing equations in integral form rather than in
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differential form appears to be more appropriate. As shown in Baines (1995) for the
case of hydraulic jumps in a two-layer flow with a rigid upper lid, the three equations
for conservation of mass in each layer and of momentum in both layers supplemented
with a geometric constraint are not sufficient to solve for the downstream variables
v1a , h1a , v2a , h2a if the upstream quantities and the speed of the jump are given.
Obviously, this difficulty also arises in the case of the flow considered here, where
the pressure at the (free) upper boundary is known but no geometric constraint
is imposed. Various sets of assumptions have been proposed to close the set of
equations. For example, in the work of Chu & Baddour (1977) and Wood & Simpson
(1984) it was assumed that energy dissipation can occur only in an expanding layer.
This allows the application of the Bernoulli equation to a contracting layer and, in
turn, yields a fully conservative flow description. A different but again conservative
closure has been considered more recently by Lowe, Rottman & Linden (2005). In
an earlier work by Yih & Guha (1955) the interfacial pressure was assumed to vary
linearily with the thickness of the upper layer and, thus, a separate equation for the
conservation of momentum in the upper layer could be derived, which, however, was
not in conservative form.

Assuming expansions of the fluid quantities as in § 2 and, in addition, of the bore
speed W ,

W = εW (1) + ε2W (2) + O(ε3), (3.3)

one then readily finds that the relationships (2.17) and (2.35) are consistent with all
three closure assumptions mentioned earlier. Also,

W (1) =
[j ]

[U ]
= vs (3.4)

in situations where Γ = O(1), while

W (1) = 0, W (2) =
[j ]

[U ]
= vs (3.5)

for internal-layer waves having Γ = O(ε). As a result, we conclude that the jump
relationships (3.1) and (3.2), which are consistent with the evolution equations (2.21)
and (2.47), are consistent also with formulations of the governing equations in integral
form proposed in the literature. In view of the fact that the bores considered in the
present context are weak bores, this may not be too surprising and it is also for this
reason that details of the derivation have been suppressed.

Compared with the case of a convex flux, the case of a non-convex flux provides
new physical phenomena (see the review paper by Kluwick 2001). In particular, in
the context of gas-dynamics there is the formation of compound shock-fan structures,
where the fan is attached to the shock. We adopt, from gas-dynamics, the terminology
‘sonic shock’ used to denote a shock travelling at a characteristic sound speed (given
by the signal at the attached edge of the fan).

The consequence of the above discussion is that a hydraulic discontinuity (either
jump or fall) propagating in (2.21) must satisfy the Lax criterion. Solutions of this
transport equation for weakly nonlinear shallow-water waves with Γ = O(1) were
obtained by Grimshaw & Smyth (1986) and in the different context of unsteady
transonic nozzle flows by Kluwick (1972), Adamson & Richey (1973) and Kluwick &
Scheichl (1996). In the following, therefore, we shall concentrate on the non-convex
case (2.47), i.e. hydraulic internal-layer waves having Γ = O(ε). For the time being, we
will also assume that jumps satisfy the Oleinik condition (3.2), enabling the formation
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Figure 6. Flux function j (Û ).

of so-called sonic jumps, which influence the flow field by the generation of waves
initially travelling with the same speed as the jump itself. A more detailed discussion
concerning the applicability of condition (3.2) if the internal jump structure is assumed
to be affected not only by viscosity but, equally, also by dispersion is presented in
§ 4. There it will be shown that if the ratio of dissipation and dispersion falls below
a certain value, then even non-sonic jumps may form which emanate rather than
absorb waves (non-classical discontinuities).

The transport equation (2.47) has to be solved numerically in general. Before doing
so it is, however, convenient to eliminate the parameters Γ̂ , Λ and β by introducing
suitably scaled quantities Û , X̂ and S in place of U , x and s3:

Û = −2Λ

Γ̂
U , X̂ = −2Λ

Γ̂ 2
x , S =

4βΛ2

Γ̂ 3
s3. (3.6)

In order to simplify the calculations, the detuning parameter σ is set to 0. One then
obtains the normalized transport equation

∂Û

∂τ
+ Û

∂Û

∂X̂
+

1

2
Û 2 ∂Û

∂X̂
= − dS

dX̂
. (3.7)

It should be noted that the definition of X̂ leaves the propagation direction unchanged
as Λ is a strictly negative quantity (see figure 5) and Γ̂ enters in quadratic form only.
In contrast, the shape function Û and the forcing function S change sign if Γ̂ changes
sign. By introducing the flux

j =
Û 2

2
+

Û 3

6
, (3.8)

(3.7) assumes the conservative form

∂Û

∂τ
+

∂j

∂X̂
= − dS

dX̂
. (3.9)

For the cubic flux function from (3.8), the Oleinik criterion (3.2) can be written as

vwb > vs � vwa (3.10)

and thus turns out to be equivalent to the Lax wave-speed-ordering principle (3.1)
in the generalized sense that for the downstream state the equality sign has to be
included (sonic jumps).

The graph j (Û ) depicted in figure 6 exhibits a minimum, jmin = 0, as well as a maxi-
mum, jmax = 2/3. This is in sharp contrast with the classical cases of free-surface-layer
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waves or internal-layer waves having strictly positive or negative nonlinearity, where
the flux function exhibits a single minimum or maximum.

In the case of steady flow, which will be investigated first, (3.9) can immediately be
integrated to yield

j (Û (X̂)) + S(X̂) = Q, (3.11)

where the integration constant Q characterizes the deviation of the flux from the
value associated with unperturbed critical flow conditions.

Equation (3.11) can be used to design a surface topography which produces a
prescribed distribution Û (X̂) or to calculate Û (X̂) for a given shape S(X̂) of a surface-
mounted obstacle. In this connection it is useful to recognize a simple geometrical
interpretation of (3.11): the surface elevation S(X̂) corresponding to a specific value
Û is given by the distance between the line j = Q and the j (Û ) plot.

As a first example, let us construct the bottom topography that yields linear
distributions of the perturbation quantities

Û = CX̂ for X̂ < 3 (3.12)

and

Û = 3C for X̂ � 3. (3.13)

Combining (3.8) and (3.11) then gives the required surface elevation

S =

⎧⎪⎪⎨
⎪⎪⎩

Q − C2X̂2

2
− C3X̂3

6
, X̂ < 3,

Q − 9C2

2
− 9C3

2
, X̂ � 3.

(3.14)

In agreement with our earlier geometrical considerations, the shape of the bottom
surface is obtained by inverting the j (Û ) graph and applying a shift Q in the normal
direction. As a result, the bottom topography exhibits a local maximum as well as a
local minimum, as shown in figure 7(a) for Q =0, C = −1. The results are displayed
in figure 7(b). The notation ‘subcritical’ and ‘supercritical’ used in figure 7(b) is
meant to indicate that small perturbations of the steady flow field at the point under
consideration will be convected upstream and downstream, i.e. vw < 0 and vw > 0. Also
included in figure 7(b) are solutions for the same topography but values of Q different
from zero, for which it generates the imposed linear distributions (3.12) and (3.13).
The general form of the solutions is understood most easily by recognizing that each
maximum or minimum of the j versus Û relationship leads to the formation of critical
points (nodes and saddle points) at X̂ locations having S ′(X̂) = 0. As an immediate
consequence of this result, and following from the geometrical interpretation of (3.11),
one reaches the interesting conclusion that the solution of the steady flow problem
for Q =0 is not unique. In addition to the imposed continuous distribution of Û ,
there exists a second solution with identical behaviour upstream and downstream.
This second solution contains a jump discontinuity, which, according to the Oleinik
criterion, occurs in the form of a sonic negative hydraulic jump as shown in figure 7(b).

Next let us investigate steady flows associated with a single isolated hump or
indentation. Specifically, we consider surface-mounted obstacles of the form

S(X̂) =
σ

cosh2 X̂
, (3.15)

where σ characterizes the maximum height or depth. Representative results for σ > 0
are plotted in figures 8–10.
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Figure 7. (a) Bottom topography S yielding a linear distribution of Û for Q = 0.

(b) Distributions of Û for various values of Q.
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Figure 9. Flow past a single hump: distributions of Û for various values of Q
and σ = 0.66.

If σ < jmax = 2/3, as in figure 8, there exist two ranges of the perturbation flux,
Q>σ and Q<jmax, of purely supercritical flow and a range jmax > Q > σ of purely
subcritical flow. Furthermore, as in the classical case of strictly positive nonlinearity,
a transition from subcritical to supercritical and supercritical to subcritical flow is
possible for a specific value, Q = σ . In addition, there exist solutions having Q < σ

which cannot be continued up to and beyond the crest of the hump and, therefore, are
of no physical relevance. Finally, note that the second supercritical flow regime, with
Q<jmax, generates disturbances U > Γ̂ /Λ and, consequently, loses its significance in
the limit Γ̂ → ∞ of strictly positive nonlinearity.

As the height of the hump σ increases, the range of the perturbation flux allowing
purely subcritical flow narrows, and vanishes if σ assumes the value jmax. As shown
in figure 9, possible solutions then include purely supercritical flows with Q > jmax

and Q<jmax and flows having Q = jmax and leading from subcritical to supercritical
conditions or vice versa.

If the height σ of the obstacle increases further, i.e. exceeds the value jmax, the
qualitative properties of steady flow change again as indicated in figure 10, where we
consider the case σ = 1. As before, there exist two ranges of the perturbation flux Q

for which purely supercritical flows are possible (Q > σ and Q<jmax), while purely
subcritical flows do not exist. In contrast with the results depicted in figure 7, however,
solutions which describe the transition from a subcritical to a supercritical state or a
supercritical to a subcritical state can no longer be constructed. This is due to the fact
that two of the branches leaving the saddle point form a closed loop which encloses
the node. Owing to the existence of this loop, the flow with Q = σ , which has both
a supercritical upstream and supercritical downstream state, is no longer unique. In
addition to the continuous solution, which assumes critical flow conditions at X̂ =0,
there exists a second solution, which exhibits two jump discontinuities. First, there is
a negative hydraulic jump located upstream of X̂ = 0, which leads from supercritical
to critical flow conditions if the Oleinik criterion holds as assumed earlier. Further
downstream, the two-layer fluid returns to supercritical conditions before it jumps
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Figure 10. Flow past a single hump. Distributions of Û for various values
of Q and σ = 1.

back to a critical state by means of a second positive hydraulic jump at X̂ =0. For
X̂ > 0, the continuous and discontinuous solutions coincide.

The non-uniqueness of the flow with Q =1 raises the question which of the two
possible solutions will occur in reality. Inspection of neighbouring solutions, as for
example the one given by the dashed line in figure 10, reveals that flows with a slightly
smaller value of Q will always contain two hydraulic jumps, a sonic negative jump
upstream of X̂ =0 and a sonic positive jump downstream of X̂ = 0. This suggests that
the solution with two hydraulic jumps can be realized physically by slowly increasing
the perturbation flux from Q < 1 to Q =1. In contrast, the continuous solution will
be of relevance if the perturbation flux is slowly reduced from a value Q > 1 to Q =1.

A different way to reach this conclusion is to investigate directly the stability of the
continuous steady-state solution with respect to changes in Q, which is of interest also
in its own right. Specifically, we assume that the flow field at time τ = 0 is given by
the continuous solution with Q =1 and investigate the changes which arise if Û far
upstream of the hump is slightly reduced to about the value associated with the dotted
curve in figure 10 for all times τ > 0. The evolution of the resulting disturbances was
calculated numerically using a Godunov scheme suitably designed for conservation
laws with non-convex flux functions (see LeVeque 1992). The results are depicted in
figure 11.

Since the flow upstream of the hump is supercritical, the disturbances are convected
downstream initially. Owing to the fact, however, that the unperturbed continuous
steady solution has a critical state at X̂ =0, they cannot reach the crest of the hump
in finite time. Furthermore, as the amplitude of the disturbances increases, thereby
generating subcritical flow conditions eventually, they start to propagate upstream.
This in turn causes the formation of a negative hydraulic jump moving upstream
also, as long as the corresponding downstream state is subcritical. Finally, however,
the disturbances immediately downstream of this hydraulic jump are large enough to
reach a critical state and, as a result, it ceases to move upstream and assumes a steady-
state position in finite time. The disturbances downstream of the sonic hydraulic jump
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Figure 11. Flow past a single hump. Stability of the steady solution Û for Q = 1 and σ = 1.
Distributions are shown for various values of τ .

still grow. They enter the supercritical regime, therefore, and propagate downstream,
which leads to the formation of a positive hydraulic jump. This discontinuity moves
downstream initially but also approaches a steady-state position as critical flow
conditions immediately downstream of the front are reached asymptotically in the
limit τ → ∞. We thus again conclude that the continuous steady solution with Q =1
is unstable with respect to small decreases in the perturbation flux.

As a second example involving unsteady effects, we investigate how a steady two-
layer flow past a single hump of the form (3.15) which is subcritical far upstream and
downstream but reaches a critical state at X̂ = 0 is transformed into a flow leading
from subcritical to supercritical conditions by the imposition of appropriate boundary
conditions at some location X̂ = X̂0 > 0. Specifically, we assume that σ = jmax = 2/3
and that Û is rapidly increased at X̂ = 7 from −2 at τ = 0 to 0 at τ = 1, i.e. over
a time interval 
τ = 1. Results obtained by numerical integration of the evolution
equation (3.7) are plotted in figure 12.

The rapid increase in Û imposed at X̂0 = 7 causes the formation of a positive
hydraulic jump, which propagates upstream. It weakens with increasing time and
vanishes before it reaches the crest of the hump located at X̂ = 0. The possibility
that a jump discontinuity may terminate at finite time was predicted first by Kluwick
& Czemetschka (1990) (see also Kluwick 1991a) in the context of weakly nonlinear
spherical and cylindrical acoustic waves in dense gases. This sudden ‘death’ of a
hydraulic jump represents another non-classical feature of the type of flow considered
here. In the case of free-surface-layer waves and internal-layer waves with strictly
positive or negative nonlinearity, hydraulic jumps, once generated, live forever; they
weaken as time progresses, but they never ‘die’.

The ‘death’ of the upstream-moving hydraulic jump results in a continuous
distribution of Û . The disturbances propagate with the local wave speed and thus
cannot pass beyond the crest of the hump, where the unperturbed flow has a critical
state Û =0. Consequently, the wave is reflected, leading in turn to the occurrence of
a negative hydraulic jump with supercritical flow conditions upstream of the front. It



Hydraulic flows in two-layer fluids 207

1

0

–1

–2

–6 –4 –2 0 2 4 6

Û

X̂

20

4

10

∞

τ = 0

Supercrit.

Supercrit.

Subcrit.

Figure 12. Flow past a single hump. Transition from a purely subcritical to a subcritical–
supercritical flow for σ = 0.66. Distributions are shown for various values of τ ; 
τ = 1.

is swept downstream, thus generating the desired steady transition from a subcritical
to a supercritical state asymptotically in the limit τ → ∞.

As pointed out before, the surface topography (3.14) admits two different solutions
for a given value of Q (figure 7b). In addition to the desired piecewise-linear
distribution (3.12), (3.13) of Û , there exists a second solution, which contains a negative
hydraulic jump located at the local minimum of S(X̂). This raises the question which
of these solutions will be realized in a start problem similar to the investigation for
a hump of the form (3.15) and σ = jmax. Integration of the evolution equation (3.7)
with respect to X̂ along the characteristics ξ = constant with dX̂/dτ = vw yields the
compatibility condition

j (Û (X̂, ξ )) + S(X̂) = f (ξ ), (3.16)

which differs from its steady counterpart (3.11) only insofar as the integration constant
Q is replaced by a function of ξ . This implies that, on each characteristic ξ = constant,
j and S are related in exactly the same way as in the case of steady flow. Consequently,
we conclude that the portion of the linear distribution (3.12) that is located inside
the loop branching off the saddle points situated at the local maximum X̂max and
the local minimum X̂min of the topography (3.14), respectively, cannot be generated
by characteristics emanating from the downstream boundary X̂ = X̂0. Therefore, we
expect that the steady solution with a hydraulic jump rather than the continuous
solution will be realized by the type of transition process considered here.

As shown in figure 13, this conclusion is in agreement with the numerical
computations. Starting with the solution for Q =0 having a supercritical state at
X̂min and a critical state at X̂0, the quantity Û at the downstream boundary X̂ = X̂0

was lowered continuously (within the time interval 
τ = 1) starting from 0 until it
assumed the value −2. Since the flow properties upstream of X̂min remain unaffected
by the boundary conditions imposed at X̂ = X̂0 = 4 for all times, the flow regime
displayed in figure 13 is limited to X̂ � 2.

The reduction of Û below 0 leads to subcritical flow conditions at X̂ = X̂0. The
disturbances generated at the downstream boundary propagate upstream, therefore,
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Figure 13. (a) Characteristic curves (thin and dotted lines) and jump discontinuities associated
with the transition process leading from supercritical flow conditions to a steady solution with

a negative hydraulic jump; X̂0 = 4, 
τ = 1. For the meaning of the dashed line see the main
text. (b) Bottom topography S as in figure 7(a).

thereby generating a negative hydraulic jump. Its strength increases with increasing
time and it assumes a sonic (critical) downstream state at τson ≈ 3. For τ � τson

the discontinuity emanates characteristics in the tangential direction and slowly
approaches its steady-state position in the limit τ → ∞. Since the flow immediately
after the hydraulic jump is subcritical, the emanating characteristics move upstream
initially. With increasing time, therefore, S(X̂) decreases, which in turn forces the flux j

to increase according to the compatibility relationship (3.16). As a consequence, critical
flow conditions j = 2/3 with vw = 0 are reached on each of these characteristics for the
specific values X̂ = X̂∗(ξ ), τ = τ∗(ξ ). As τ increases beyond τ∗, the flow quantities on
the characteristic ξ = constant under consideration then enter the supercritical flow
regime Û < −2 and the wavefront is swept downstream. This causes the formation
of a positive hydraulic jump, which eventually leaves the flow domain and, more
importantly, generates the supercritical portion of the linear steady-state distribution
(3.12), (3.13) of Û downstream of the sonic negative hydraulic jump located
at X̂ =2.

What is clear from these solutions is the new phenomena that arise owing to the
non-convex flux (or mixed nonlinearity). We have the coexistence of positive and
negative hydraulic jumps and propagating sonic jumps. In a novel evolution problem
we have shown how the transition from one steady state to another can be achieved
by upstream-propagating waves. The mechanism for transition from a subcritical to
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a supercritical state is accomplished only through an upstream-propagating hydraulic
jump terminating in finite time with the formation of a stable negative hydraulic jump
moving downstream. This scenario has no counterpart in theories based on convex
flux functions.

4. Further comments on shock admissibility
Following the discussion of some specific flow problems let us return to the more

fundamental question of shock admissibility. As shown more recently for non-convex
flux functions, some weak solutions satisfying an admissible mathematical-entropy
inequality may violate the Oleinik geometric conditions (see Hayes & LeFloch 1997).
These solutions have furthermore been shown to be stable. The key idea to their
construction is that they arise when the hyperbolic equation is embedded in a struc-
ture involving not just viscosity but also dispersion. These shocks then are generated
as limits of diffusive–dispersive travelling waves and are termed non-classical shocks.
Each jump can thus be regarded as representing a dissipative–dispersive profile whose
streamwise extent is so small compared with the characteristic wavelength that it
collapses into a single point. Such shocks have a greater strength than that allowed for
classical shocks satisfying condition (3.10), as they involve characteristics emanating
from one side of the shock rather than intersecting the shock path. The non-classical
feature of these shocks is also related to their structural sensitivity – the shock
strength itself depends on the precise ratio of dispersion and dissipation in the
system.

Figure 14(a) displays the Û versus j diagram. It then follows immediately from the
relationships (3.1) for the wave speed vw and the shock speed vs that the slopes of a
wavefront or a shock front in the (X̂, τ )-plane are given by the slope of the tangent to
this graph at the point under consideration or by the slope of the so-called Rayleigh
line, i.e. the chord which connects the upstream and downstream states.

For example, if we consider a hydraulic jump leading from state 1 to state 2, we
obtain a Lax-shock scenario, depicted in figure 14(b), i.e. a jump discontinuity and
merging wavefronts. If the value of Û downstream of the discontinuity is reduced,
we eventually reach the limiting case of a sonic hydraulic jump characterized by the
property that the shock front is parallel to the wavefront immediately downstream
of the discontinuity. According to the Oleinik criterion (3.10), this sonic discontinuity
represents the hydraulic jump of maximum possible strength if the upstream state 1
is fixed (figure 14c). If we consider stronger hydraulic jumps, for example the jump
connecting states 1 and 4, we obtain the configuration of a so-called undercompres-
sive shock shown in figure 14(d ). The downstream wavefront now leaves the discon-
tinuity rather than merging with it, which, in general, is considered as inadmissible.
However, this may not be so if dispersive effects, which have been neglected so
far, are taken into account. This is seen most easily by investigating the model
equation

∂Û

∂τ
+

(
1 +

Û

2

)
Û

∂Û

∂X̂
= α

∂2Û

∂X̂2
+ γ

∂3Û

∂X̂3
, α > 0, (4.1)

i.e. the transport equation (3.7) derived earlier for a locally flat bottom, S ≡ 0, augmen-
ted with standard dissipative and dispersive terms. This equation is similar to the
dispersive equations for two-layer flows considered by for example Kakutani &
Yamasaki (1978), Melville & Helfrich (1987) and Grimshaw, Pelinovsky & Talipova
(1997) but now we will consider a specific viscous dissipation of the form used in the
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Figure 14. Oleinik criterion: (a) Graph of the flux function j (Û ) given by (3.8) including
straight lines (Rayleigh lines) connecting upstream and downstream states of jumps.
(b) Admissible jump, 1 → 2. (c) Jump of maximum possible strength (sonic shock), 1 → 3.
(d ) Inadmissible jump (undercompressive shock), 1 → 4.

papers by Schär & Smith (1993) and Smith & Smith (1995) (see also Jiang & Smith
2001a , b; Gustafsson & Sundstrom 1978). In this connection, it should be added that
purely dispersive limits of continuously stratified flows were investigated by Clarke &
Grimshaw (1994); Clarke & Grimshaw (1999, 2000). We also note that (4.1) without
a cubic nonlinear term was proposed by Whitham (1974, p. 482) as a model for the
internal structure of hydraulic jumps in single-layer fluids. Furthermore, it should be
mentioned that if the effects of surface tension are assumed to be negligible small, the
parameter γ is a strictly positive quantity (e.g. Melville & Helfrich 1987). However,
as shown by Lighthill (1978) in the context of ripple propagation, the influence of the
surface tension σ̃ has to be taken into account if the ratio σ̃ /[ρ̃2g̃(h̃10 + h̃20)

2] becomes
an O(1) quantity. Then the dispersion relationship might be altered significantly in
such a way that γ becomes negative. Therefore, this case will also be discussed in the
following.

Finally, we draw attention to the recent paper by Stastna & Peltier (2005) on the
generation of large-amplitude internal solitary and solitary-like waves. In contrast
with the present study, where no restrictions on the density ratio are imposed, the
calculations were based on the Boussinesq approximation but allowed for an arbitrary
wave amplitude. The results clearly show that even waves of maximum amplitude
cause only small displacements of the interface if the interface thickness is close to one-
half the total fluid-layer thickness, i.e. if the nonlinear parameter Γ plotted in figure 3
is small, indicating in turn that a weakly nonlinear analysis is fully self-consistent.

As pointed out recently by Kluwick (1991b), (4.1) also arises in studies dealing
with the evolution of weakly nonlinear, weakly dissipative and weakly dispersive
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kinematic waves in suspensions of particles in liquids, if the unperturbed state differs
only slightly from the state associated with the inflexion point of the drift–flux
relationship. The original equation (3.7) then is recovered in the limit of vanishing
dissipation and dispersion, α → 0, γ → 0.

In order to decide which shock discontinuities are admissible in this limit, Kluwick
et al. (2000) studied travelling-wave solutions of (4.1):

Û = Û (ξ ), ξ = X̂ − vsτ,

Û → Û b for ξ → −∞,

Û → Û a for ξ → ∞,

⎫⎪⎬
⎪⎭ (4.2)

where Û b and Û a denote, respectively, the values of Û before and after the shock.
Introducing suitably scaled quantities G and η in place of U and ξ ,

G =
2

[Û ]

(
Û b + Û a

2
− Û

)
, η =

[Û ]2

24α
ξ, (4.3)

the shock-structure problem assumes the form

(G2 − 1)(B + G) = G′ + DG′′,

G → ±1 for η → ∓∞,

}
(4.4)

where a prime denotes differentiation with respect to η and

B = − 6

[Û ]

(
1 +

Û b + Û a

2

)
, D =

γ [Û ]2

24α2
. (4.5)

The definition of D indicates immediately how the limit to the non-dissipative
non-dispersive case has to be carried out: by letting α and γ approach zero with γ /α2

kept fixed. In this limit, ξ tends to zero almost everywhere, i.e. in the original variables
the shock layer collapses into a jump discontinuity. Investigation of the shock-layer
problem (4.4) shows that solutions do not exist for arbitrary values of the parameters
B and D but only in a certain domain of the (B, D)-plane, as indicated in figure 15.

If |D| is sufficiently large and D is negative, i.e. if γ < 0, the downstream state is
approached monotonically while the upstream state is approached in an oscillatory
manner. On increasing D, solutions are located in region II, for which both the
downstream and upstream states are approached monotonically. A further increase
in D leads into a third flow regime, III, where the departure from the upstream state
is monotonic while the approach to the downstream state is oscillatory. In region I,
shock-layer solutions exist for B � 1 only and shocks with B = 1 can be shown to
have sonic downstream states. As a consequence, the Oleinik admissibility criterion
is found to be satisfied. As shown by Kluwick et al. (2000), however, in regions II
and III shock-layer solutions can be obtained for B � Bcr (D) only where Bcr > 1
for D > 0.5. Moreover, shocks of limiting strength B =Bcr (D) > 1 are stronger than
sonic shocks. Therefore they violate the Oleinik criterion, although they are clearly
admissible owing to the existence of a shock-layer solution.

Figure 16 displays the behaviour of the solutions to the shock-layer problem (4.4)
as B tends to Bcr with D fixed. In this limit, the shock layer is seen to split effectively
into two sublayers. Inside the first sublayer G decreases from 1 to a value −Bcr which
is smaller than its value far downstream and inside the second sublayer increases to
−1 to satisfy the downstream boundary condition. The sublayers are separated by
a pronounced plateau region where G ∼ −Bcr , whose length tends to infinity as B
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Figure 16. Solution to the shock-layer problem in the limit B → Bcr .

approaches Bcr . In this limit we are left, therefore, with the profile inside the first
sublayer. It can be calculated analytically,

D >
1

2
,

G ∼ 1

2

[
1 − Bcr − (1 + Bcr ) tanh

(
(3 − Bcr )(1 + Bcr )

4
(η + const.)

)]
,

Bcr (D) = 3 −
√

2

D
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)
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Figure 17. Non-classical shock Û b → Û a in the (j, Û )-diagram.

and has a larger amplitude than a sonic shock with Bcr = 1. As a consequence, the
wave and shock speeds will satisfy the ordering relationship

vwb > vs � vwa (4.7)

as in figure 14(d ), rather than the Oleinik admissibility criterion. The subscript a

now denotes the value after the non-classical shock, i.e. the value corresponding to
G = −Bcr .

We note that the Rayleigh lines of such non-classical shocks, which emanate rather
than absorb wavefronts, can easily be constructed in the (j, Û )-diagram. As shown in
Kluwick et al. (2000), all Rayleigh lines which characterize admissible non-classical
shocks pass through fixed points that are a distance 2δ/

√
3, δ =α/

√
γ , from the

inflexion point at Û = −1 in the Û versus j graph. This is shown in figure 17 for
the case of negative non-classical shocks, where the result (4.6) expressed in terms of
the original variables assumes the form

γ > 0, Û b > −1 +
4√
3
δ :

Û =
Û a + Û b

2
+

[Û ]

2
tanh

|[Û ]|ξ
4
√

3γ
, Û a = −2 +

2√
3
δ − Û b.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.8)

The fixed point relevant for the construction of positive non-classical shocks would
be located above Û = −1. In the limit of vanishing dissipation, δ = 0, both fixed points
coincide with the inflexion point and one then obtains the result

Û = −1 − (1 + Û b) tanh
|1 + Û b|ξ

2
√

3γ
, Û a = −2 − Û b, (4.9)

which is valid for positive as well as negative inviscid jumps. It is readily shown that
this expression is equivalent to the inviscid-bore solutions of the modified Korteweg–
de Vries equation, which have been known for some time and have been observed
experimentally (e.g. Melville & Helfrich 1987; Baines 1995, pp. 128, 129). Apparently,
however, their non-classical nature has not been recognized so far.

The above considerations indicate that the limiting form of the evolution equations
(2.47) and (3.7) for non-dispersive non-dissipative waves is essentially incomplete and
has to be supplemented with further information on how fast these effects tend to



214 A. Kluwick, S. Scheichl and E. A. Cox

zero in this limit. According to the model adopted here, the appropriate solution of
(3.7) is selected by the Oleinik admissibility criterion if the dispersion coefficient is
negative or if dissipation is dominant. However, if dissipation is weak and if the effects
of surface tension are sufficiently small that the dispersion coefficient is positive, the
occurrence of non-classical shocks has to be taken into account.

It should be kept in mind, however, that for any solution of the shock-layer problem
to describe the internal structure of an admissible hydraulic jump, its streamwise extent
has to be so small that in the original variables X̂ and τ of (4.1), the shock layer
collapses into a jump discontinuity. If dissipation is dominant or a balance between
dispersion and dissipation exists, i.e. α �

√
|γ | or α ∼

√
|γ |, the shock-layer thickness

is O(α) and, consequently, the above requirement is fulfilled as long as α � 1. For
O(1) dissipation and small dispersion, jumps will obviously be heavily smeared even
over ranges where the original scales are O(1) quantities; however, this case is beyond
the scope of the theory presented here. In the case of very weak dissipation, i.e.
α �
√

|γ | � 1, the situation turns out to be more complicated. If the jump is non-
classical, its internal structure is characterized by downstream and upstream states
that are both approached monotonically. Then the streamwise extent of the shock
layer is O(|γ |1/2), which again satisfies the requirement of an asymptotically thin shock
layer. In contrast with that, a discontinuity having a shock-layer solution dominated
by dispersion for which either the upstream state (γ < 0) or the downstream state
(γ > 0) is approached in an oscillatory way (see figure 15) can then be regarded as an
admissible classical jump only if the dissipation is still strong enough to ensure that
the solution converges to a non-oscillatory upstream or downstream state within a
inner spatial range that is much smaller than O(1). Inspection of the problem (4.4)
immediately shows that this requirement leads to the additional condition α � |γ |.
Some dissipation is obviously needed to guarantee the occurrence of classical jumps.
The inviscid bore, therefore, represents the only possible solution in the limit of
vanishing dissipation, δ = α/

√
γ = 0, γ > 0.

We conclude this section with an example which shows how such shocks influence
steady flows over a bottom topography. Specifically, we return to a case investigated
earlier: the flow past a single hump of the form described by (3.15) with σ =1 having
supercritical conditions far upstream; see figure 18. If γ < 0 or γ > 0 and δ �

√
3/2,

the Oleinik admissibility criterion holds and the resulting solutions contains two
sonic hydraulic jumps, as pointed out before. Evaluation of (3.11) with Q =1 shows
that the positions of these jumps are given by X̂ = −acosh

√
3 = −1.146 and X̂ =0,

respectively. In the limit δ =
√

3/2, the points Û = 0 and Û = −2 in figure 17, which
characterize the sonic upstream and downstream states of these hydraulic jumps, are
at the same time fixed points of Rayleigh lines associated with non-classical shocks,
i.e. the two sonic hydraulic jumps can be interpreted also as non-classical hydraulic
jumps of the minimum possible strength. If γ > 0 and δ decreases below the limiting
value

√
3/2, these fixed points move closer to the inflexion point of the Û versus

j graph, thus generating solutions which contain non-classical hydraulic jumps that
have larger amplitudes and are located further downstream. Finally, in the limit
of lossless flow, δ = 0, the two Rayleigh lines coincide and, as a consequence, the
positions of the associated non-classical hydraulic jumps (inviscid bores), which now
assume their maximum possible strength, are symmetrical with respect to X̂ =0. For
the example considered here, these jumps are located at X̂ = ∓ acosh

√
6/2 = ∓0.658.

From the physical point of view, non-classical jumps are characterized by the fact
that the wavefront leaves the discontinuity on one side, see figure 14(d ), whereas if the
dissipation is large enough that the Oleinik criterion (3.10) holds then the wavefronts
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Figure 18. Steady solution with two inviscid bores (vertical solid lines) if δ =0; for δ � 3/2
there are two viscosity-dominated sonic bores (vertical broken lines). Q = 1, σ = 1.

merge on the discontinuity from both sides or, as a limiting case, the waves leave
it tangentially on one side (sonic jump); see figures 14(b) and 14(c). Exactly this
difference in the two mechanisms determines which parts of the formally multivalued
solutions of the wave equation (3.9) or, as in the case shown in figure 18, its steady
counterpart (3.11) are realized. In other words, despite the fact that dispersive and
viscous effects are small, the uniqueness of the ‘hyperbolic’ flow field governed by
either (3.9) or (3.11) crucially depends on the ratio of dissipation and dispersion in
the system, since both affect the inner shock structures. In order to demonstrate this
phenomenon graphically, the different solutions for the characteristics ξ = constant
with dX̂/dτ = vw associated with the two steady distributions of Û presented in
figure 18, i.e. the classical case featuring two viscosity-dominated sonic bores and the
non-classical case featuring two inviscid bores, are depicted in figures 19(a) and 19(b),
respectively. In connection with the classical case, it should be noted that evaluation
of dτ/dX̂ =1/vw together with the Oleinik condition (3.10) renders the slopes of the
characteristics in the (X̂, τ )-plane, immediately after the first sonic jump, proportional
to 
X̂−1/2, 
X̂ � 1. In contrast with this, the slopes after the second sonic jump turn
out to satisfy the relationship dτ/dX̂ ∝ 
X̂−1, which leads to the conclusion that the
wavefront is not able to leave the second jump in finite time. This result is a direct
consequence of the fact that the flow is purely supercritical downstream of the hump
but has a critical state at X̂ = 0, where dS/dX̂ = 0. It thus complements the discussion
in § 3 (and see figure 11) concerning the stability of the supercritical continuous steady
solution for Q =1, where it was stated that the characteristics associated with the
solution branch upstream of the hump cannot reach the crest in finite time. As shown
in figure 19(b), a completely different picture emerges in the limit of lossless flow,
δ = 0, where the requirement of uniqueness of the solution leads to the formation of
two inviscid bores. Since the Rayleigh lines associated with these non-classical shocks
cut the Û versus j graph at its inflection point Û = −1, the characteristic curves
pass through the jumps without changing their slopes and reach the end of the flow
domain under consideration within a finite period of time.



216 A. Kluwick, S. Scheichl and E. A. Cox

0

4

8

12

16
(a) (b)

–6 –4 –2 0 2 4 6
X̂

∆τ

0

4

8

12

16

–6 –4 –2 0 2 4 6
X̂

X̂  = –acosh √3 X̂  = +– acosh √6/2

Figure 19. (a) Characteristic curves of the steady solution with two viscosity-dominated sonic

bores, δ �
√

3/2. (b) Characteristic curves of the steady solution with two inviscid bores, δ = 0.
Q =1, σ = 1.

5. Conclusions
The main objective of this study is to provide insight into the effect of density

stratification on the propagation of weakly nonlinear gravity waves in free-surface
flows over a bottom topography when the unperturbed state is near critical. For
simplicity a two-layer fluid model has been adopted and the liquids have been
taken to be incompressible and inviscid. Furthermore, it has been assumed that
the streamwise extent of the obstacle located on a horizontal flat bottom is large
compared with the total depth of the flow, so that the fluid motion in both layers is
governed by the one-dimensional form of the Euler equations with hydrostatic pressure
distributions.

The analysis then shows that the two types of waves which have to be distinguished
in a such a two-layer flow, i.e. the surface-layer waves and internal-layer waves,
may exhibit remarkably different behaviour. In the first case, the resonant response
to obstacle-forcing is governed by the inviscid Burgers equation with quadratic
nonlinearity, which has been investigated in detail in the past and, therefore, has
not been considered further here. The inviscid Burgers equation is found also to
describe the evolution of internal-layer waves in general. However, there exists a finite
range of the parameters characterizing the unperturbed state in which the quadratic
nonlinear parameter is no longer of order unity but is of the same magnitude as
the wave amplitude and even may change sign. An example is provided by flows
whose unperturbed state is characterized by equal velocities and nearly equal fluid-
layer thicknesses. As a consequence, internal-layer waves in this flow regime satisfy
a modified inviscid Burgers equation which contains a cubic as well as a quadratic
nonlinear term. This equation is known to arise also in studies dealing with weakly
nonlinear acoustic waves in dense gases. Investigations carried out in this latter area
over the past two decades have revealed a number of unexpected and unconventional
properties associated with this equation. These include the occurrence of negative
shocks, sonic shocks and split shocks.

The validity of the Oleinik criterion can be checked rigorously only by investigating
the structure of the thin shock layer which emerges if physical effects such as internal
friction, streamline curvature and surface tension, neglected in the purely hyperbolic
approach, are accounted for. Unfortunately, however, complete formulations of the
shock-layer problem associated with hydraulic jumps apparently do not exist at
present. Even in the simplest case, that of laminar flow, so far only the initial phase of
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the flow development has been studied, which is not sufficient for the present purpose.
In order to gain insight into how dissipative as well as dispersive mechanisms may
affect the admissibility of jump discontinuities predicted by hyperbolic conservation
laws, we have adopted the simplest model equation which reduces to the correct limit
if viscosity plays an insignificant role compared with surface tension and streamline
curvature. The general internal structure of hydraulic jumps is described then
by travelling-wave solutions of this modified Burgers–Korteweg–de Vries equation
(mBKdV), where dispersion and dissipation are balanced effects. It is found that the
permissible jump discontinuities depend crucially on the precise ratio of dispersion and
dissipation and, most importantly, may violate the Oleinik criterion, i.e. may emanate
rather than absorb characteristics. Jump discontinuities having this unconventional
property belong to the class of non-classical shocks, which has received increasing
interest recently (Shearer 1988; LeFloch 1999; Kluwick et al. 2000). A prominent
example is provided by the celebrated inviscid bore, which has been known for quite
some time although its non-classical nature apparently has not been recognized so
far.

As mentioned before, the mBKdV equation adopted here is asymptotically
correct as far as dispersive effects are concerned. In other words, if lossless but
(weakly) dispersive flow conditions are assumed then the model equation reduces
to the asymptotically correct modified Korteweg–de Vries equation (mKdV) already
discussed in the literature (see Melville & Helfrich 1987). In this case, the insertion
of non-classical jumps, i.e. inviscid bores of vanishing shock-layer thickness, in order
to remove regions of multivaluedness, turns out to be based completely on rational
arguments. However, the mBKdV model provides only a very modest qualitative
description of viscous effects and further progress in the evaluation of appropriate
admissibility criteria required to complete existing hydraulic theories of one- and two-
layer fluid flows will, therefore, strongly depend on the formulation of shock-layer
equations which include both dispersion and dissipation in a rational manner. A
first step in this direction was made recently by Kluwick, Exner & Cox (2000), who
considered hydraulic jumps of small amplitude in single-layer fluids, assuming that
viscous effects in the unperturbed flow are negligibly small except inside a thin laminar
boundary layer adjacent to the solid boundary. Similarly to the studies by Gajjar &
Smith (1983) and Bowles & Smith (1992), a structure comprising three layers or
decks with different physical properties emerges in the large-Reynolds-number limit.
Viscosity is found to affect the flow perturbations caused by a hydraulic jump inside
a thin sublayer of the oncoming boundary layer, the so-called lower-deck region, only
in leading order. Inside the rest of the boundary layer, the main-deck region, the flow
perturbations are predominantly inviscid. They act to transfer the displacement effects
exerted by the lower deck to a layer of inviscid fluid above the boundary layer, the
upper-deck region, and to transfer the resulting pressure response to the lower-deck
region thereby closing the flow description. In contrast with the studies by Gajjar &
Smith (1983) and Bowles & Smith (1992), the triple-deck structure describes not only
the initial departure from the unperturbed state but also the flow behaviour inside the
whole shock layer. Furthermore, the pressure response in the outer, predominantly
inviscid, region to the displacement resulting from the viscous-dominated wall layer
is found to be nonlinear rather than linear, thus allowing for the passage through
the critical state which occurs inside the shock layer. This analysis by Kluwick
et al. (2000) has been extended to weakly nonlinear hydraulic jumps in two-layer
fluids with quadratic nonlinearity, but work in progress indicates that a similar
approach is possible also for two-layer fluids with mixed nonlinearity.
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